S2 Continuous Random Variables Past Qu.s

1) June 2004 no. 7

The random variable T represents the number of minutes that a train is late for a particular scheduled journey on a randomly chosen day.
(i) Give a reason why T could probably not be well modelled by a normal distribution.
(ii) The following probability density function is proposed as a model for the distribution of T :

$$
\mathrm{f}(t)= \begin{cases}\frac{1}{67500} t(t-30)^{2} & 0 \leqslant t \leqslant 30 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of $\mathrm{E}(T)$.

On a randomly chosen day I will allow for the train to be up to t_{0} minutes late. I wish to choose the value of t_{0} for which the probability that the train is less than t_{0} minutes late is 0.95 .
(b) Show that t_{0} satisfies the equation

$$
\begin{equation*}
t_{0}^{4}-80 t_{0}^{3}+1800 t_{0}^{2}=256500 \tag{4}
\end{equation*}
$$

(c) Show that the value of t_{0} lies between 22 and 23 .
2) Jan 2005 no. 6

Two models are proposed for the continuous random variable X. Model 1 has probability density function

$$
f_{1}(x)= \begin{cases}1-\frac{1}{2} x & 0 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

The diagram shows the graph of $y=f_{1}(x)$.
(i) Find the upper quartile of X (i.e., find the value q such that $\mathrm{P}(X<q)=0.75$) according to model 1 .

Model 2 has probability density function

$$
\mathrm{f}_{2}(x)= \begin{cases}k\left(4-x^{2}\right) & 0 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

(ii) The graph of $y=\mathrm{f}_{2}(x)$ intersects the y-axis at the point $(0,4 k)$. Copy the diagram showing the graph of $y=\mathrm{f}_{1}(x)$. On your copy sketch the graph of $y=\mathrm{f}_{2}(x)$, explaining how you can tell without doing any integration that $4 k<1$.
(iii) State whether the value of q obtained from model 1 is greater than, equal to, or less than the value given by model 2 . Use your diagram to justify your answer.
3) June 2005 no. 3

The lifetime, in years, of an electrical appliance may be modelled by the random variable T with probability density function

$$
\mathrm{f}(t)= \begin{cases}\frac{k}{t^{2}} & 1 \leqslant t \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Show that $k=\frac{4}{3}$.
(ii) Find the value of the mean of T, giving your answer in the form $a \ln b$.
(iii) Find the time t_{0} for which $\mathrm{P}\left(T>t_{0}\right)=0.1$.
4) Jan 2006 no. 8

A continuous random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}k x^{n} & 0 \leqslant x \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

where n and k are positive constants.
(i) Find k in terms of n.
(ii) Show that $\mathrm{E}(X)=\frac{n+1}{n+2}$.

It is given that $n=3$.
(iii) Find the variance of X.
(iv) One hundred observations of X are taken, and the mean of the observations is denoted by \bar{X}. Write down the approximate distribution of \bar{X}, giving the values of any parameters.
(v) Write down the mean and the variance of the random variable Y with probability density function given by

$$
\mathrm{g}(y)= \begin{cases}4\left(y+\frac{4}{5}\right)^{3} & -\frac{4}{5} \leqslant y \leqslant \frac{1}{5} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

5) June 2006 no. 1

Calculate the variance of the continuous random variable with probability density function given by
6) Jan 2007 no. 6

$$
\mathrm{f}(x)= \begin{cases}\frac{3}{37} x^{2} & 3 \leqslant x \leqslant 4 \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

The continuous random variable X has the following probability density function:

$$
\mathrm{f}(x)= \begin{cases}a+b x & 0 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

where a and b are constants.
(i) Show that $2 a+2 b=1$.
(ii) It is given that $\mathrm{E}(X)=\frac{11}{9}$. Use this information to find a second equation connecting a and b, and hence find the values of a and b.
(iii) Determine whether the median of X is greater than, less than, or equal to $\mathrm{E}(X)$.

7) June 2007 no. 7

Two continuous random variables S and T have probability density functions as follows.

$$
\begin{array}{ll}
S: & \mathrm{f}(x)= \begin{cases}\frac{1}{2} & -1 \leqslant x \leqslant 1 \\
0 & \text { otherwise }\end{cases} \\
T: & \mathrm{g}(x)= \begin{cases}\frac{3}{2} x^{2} & -1 \leqslant x \leqslant 1 \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

(i) Sketch on the same axes the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$. [You should not use graph paper or attempt to plot points exactly.]
(ii) Explain in everyday terms the difference between the two random variables.
(iii) Find the value of t such that $\mathrm{P}(T>t)=0.2$.

8) Jan 2008 no. 7

A continuous random variable X_{1} has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}k x & 0 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(i) Show that $k=\frac{1}{2}$.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
(iii) Find $\mathrm{E}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{1}\right)$.
(iv) Sketch the graph of $y=\mathrm{f}(x-1)$.
(v) The continuous random variable X_{2} has probability density function $\mathrm{f}(x-1)$ for all x. Write down the values of $\mathrm{E}\left(X_{2}\right)$ and $\operatorname{Var}\left(X_{2}\right)$.
9) June 2008 no. 5
(i) A continuous random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}\frac{3}{4}\left(1-x^{2}\right) & -1 \leqslant x \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

The graph of $y=\mathrm{f}(x)$ is shown in the diagram.

Calculate the value of $\operatorname{Var}(X)$.

9) continued

(ii) A continuous random variable W has probability density function given by

$$
\mathrm{g}(x)= \begin{cases}k\left(9-x^{2}\right) & -3 \leqslant x \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(a) Sketch the graph of $y=\mathrm{g}(x)$.
(b) By comparing the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, explain how you can tell without calculation that $9 k<\frac{3}{4}$.
(c) State with a reason, but without calculation, whether the standard deviation of W is greater than, equal to, or less than that of X.

10) Jan 2009 no. 5

The continuous random variables S and T have probability density functions as follows.

$$
\begin{array}{ll}
S: & \mathrm{f}(x)= \begin{cases}\frac{1}{4} & -2 \leqslant x \leqslant 2 \\
0 & \text { otherwise }\end{cases} \\
T: & \mathrm{g}(x)= \begin{cases}\frac{5}{64} x^{4} & -2 \leqslant x \leqslant 2 \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

(i) Sketch, on the same axes, the graphs of f and g.
(ii) Describe in everyday terms the difference between the distributions of the random variables S and T. (Answers that comment only on the shapes of the graphs will receive no credit.)
(iii) Calculate the variance of T.
11) Jan 2010 no. 7

The continuous random variable T is equally likely to take any value from 5.0 to 11.0 inclusive.
(i) Sketch the graph of the probability density function of T.
(ii) Write down the value of $\mathrm{E}(T)$ and find by integration the value of $\operatorname{Var}(T)$.
(iii) A random sample of 48 observations of T is obtained. Find the approximate probability that the mean of the sample is greater than 8.3 , and explain why the answer is an approximation.
12) June 2010 no. 8

The continuous random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}k x^{-a} & x \geqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

where k and a are constants and a is greater than 1 .
(i) Show that $k=a-1$.
(ii) Find the variance of X in the case $a=4$.
(iii) It is given that $\mathrm{P}(X<2)=0.9$. Find the value of a, correct to 3 significant figures.

